Exact sampling formulas for multi-type Galton-Watson processes.
نویسندگان
چکیده
Exact formulas for the mean and variance of the proportion of different types in a fixed generation of a multi-type Galton-Watson process are derived. The formulas are given in terms of iterates of the probability generating function of the offspring distribution. It is also shown that the sequence of types backwards from a randomly sampled particle in a fixed generation is a non-homogeneous Markov chain where the transition probabilities can be given explicitly, again in terms of probability generating functions. Two biological applications are considered: mutations in mitochondrial DNA and the polymerase chain reaction.
منابع مشابه
Branching Processes
Galton-Watson processes were introduced by Francis Galton in 1889 as a simple mathematical model for the propagation of family names. They were reinvented by Leo Szilard in the late 1930s as models for the proliferation of free neutrons in a nuclear fission reaction. Generalizations of the extinction probability formulas that we shall derive below played a role in the calculation of the critica...
متن کاملLimit Laws of Estimators for Critical Multi - Type Galton – Watson Processes
We consider the asymptotics of various estimators based on a large sample of branching trees from a critical multi-type Galton– Watson process, as the sample size increases to infinity. The asymp-totics of additive functions of trees, such as sizes of trees and frequencies of types within trees, a higher-order asymptotic of the " relative frequency " estimator of the left eigenvector of the mea...
متن کاملBranching Processes
The study of branching processes began in the 1840s with Irénée-Jules Bienaymé, a probabilist and statistician, and was advanced in the 1870s with the work of Reverend Henry William Watson, a clergyman and mathematician, and Francis Galton, a biometrician. In 1873, Galton sent a problem to the Educational Times regarding the survival of family names. When he did not receive a satisfactory answe...
متن کاملAn Elementary Proof of Hawkes’s Conjecture on Galton-watson Trees
In 1981, J. Hawkes conjectured the exact form of the Hausdorff gauge function for the boundary of supercritical Galton-Watson trees under a certain assumption on the tail at infinity of the total mass of the branching measure. Hawkes’s conjecture has been proved by T. Watanabe in 2007 as well as other precise results on fractal properties of the boundary of Galton-Watson trees. The goal of this...
متن کاملBranching Processes
We introduce the basic theory of Galton-Watson branching processes, and the probabilistic tools needed to analyse them. The aim is to give a basic treatment of branching processes, including results on the limiting behaviour for subcritical, critical, and supercritical processes. We introduce just enough probabilistic theory to make the results rigourous, but avoid unnecessary technicalities as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of mathematical biology
دوره 45 4 شماره
صفحات -
تاریخ انتشار 2002